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Comparatively little is known analytically on problems of convective heat exchange in 
a viscoplastic medium such as susp~,nsions, solutions, and polymer melts with rheological 
properties dependent on temperature. Because of the complexity of the equations of motion, 
numerical methods have prevailed. Using the self-modellng equations of [2] we obtain non- 
linear integral equations describing the temperature distribution in a non-Newtonian medium 
for the case of planar flow. 

We consider a fluid moving between two planes separated by distance 2h (--h<~.~y<.h). 
Let the temperature of the walls of the channel vary linearly with the longitudinal coordi- 
nate x, Tw ffi To + Ax. 

As shown in [2], in certain cases uniform motion occurs, despite the dependence of the 
viscosity on the coordinates x and y. Therefore we consider the system of equations 

ap /ax  = a ~ a y ,  Op/ay = aWax, ~ A T  = pcpaTlat + pcpuaYlaz. (I) 

We use the rheological equation 

~ --'-- k~ I d~-~u In-le-~(~-T~ d= ayl ~y' (2) 

where ko is a constant determined by the consistency of the medium, n is the flow index 
(n > 1 corresponds to a dilating fluid, n < 1 to a pseudoplastlc fluid, and u(y) is the 
fluid velocity. We assume that the temperature of the fluid can be written as the sum of 
two terms 

T(x, y) = r~(x) + iq(y). 

Substituting (2) and (3) into the stationary system of equations (i) and performing 
straightforward calculations, we get the following boundary value problem 

o" ~ ; " ~  ~o = - | , -  -7~-e , 

o (l)  = o,  o' (t) = i ,  o" O) = o,  o' (o) = o,  

where 

(3) 

(4) 

!1. TI~., ~,qJz, .ohp% H 
~= ~, O=~" H=~" Pe ...... . ,  ;6=--" qwh ~. +~ Pe ' 

D = 0,5 Re~,~;  l:lew = "~-~#?~" Z,~. [ ~ I . 
kw ' = 0,5pu~ ' 

Here qw is the heat flux at the walls, T w is the frictional stress on the walls, uo is the 
average flow velocity, k is the consistency constant of the medium evaluated at the wall 
temperature, l w is the lWcal drag coefficient, and Pc, Rew are the Peclet and Reynolds numbers. 

For a given average flow velocity uo, the constant D will be unknown and along with the 
three constants of integration of the nonlinear differential equation (4) will be determined 
by the four boundary conditions. After the solution 8(~) of (4) is found, the fluid velocity 
can be obtained from the relation u = u0w(~ ) = u00"(~) , and the Nusselt number, calculated with 
respect to the weighted mean temperature of the fluid, is given by 

1 +j( ~-q = O' ,. . 
O 
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Equation (~) can be solved e f f i c i e n t l y  by an approximate s e r i e s  expansion,  as d iscussed  
below, We consider ~he case of  larEe Pc; ~his  i s  relevan~ because we consider ~he medium 
~o be weakly heat conduc~in$ and there fore  l a r s e  Pec l e t  numbers can be reached even for 
small f low v e l o c i t i e s .  Zn ~his  case ~ * 0 and the boundary value problem (4) reduces to 

8 ' "  = --DrnT=rne TM, nz = t:'r~, (5)  
e(1) = o, o'O)  = I, e"(1) = o, e'(o) -- o. 

Dlfferentlatlng (5) wi~h respect to ~ and letting ~(~) = 8'(~), we obtain a boundary value 
problem for ~he heat flux 

q ' "  = (m,,'|)q" -}- Hmq"q,  c/(1) -- 1, q'( t)  -- 0, q(0) = 0. (6)  

We look for the solution of (6) in ~.he form of a c o n v e r g e n t  [3] series In powers of the 
small parameter Ha: 

q(~) = ~ q~(~,)(mn) ~, (7) 
k==0 

qo (i )  = t,  q'o ( i )  = o, qo (o) = o; q~(i) = ~,; (t)  = q, (o) = o, ~ > o. 

Substitutlng (7) into (6) and equating coefficients of identical powers of Hm, we obtain a 
system of linear differential equations which can be solved exactly, The first two terms 
of series (7) are 

q0(D = [(m + 2)~ - ~.+2]/(,,~ + i), 
~.~+5 (m + 2)2~ ~+4 

q* (~) = Z (m + I) (2m + 5) (m -~ 3) -- "(,, + i) (,,t + 3) (m + 4) + 

(m + 2) (4m 8 + 30m 2 + 70m --}- 44) ,~m+ s (4m s + 25m 2 + 49m + 28) 
"~ 4 (m + i)'~ (2r~ + 5) (m + 3) (m + 4) --2 m , J)'(2m+5)(m+3)(m+4) .L. ' �9 

From this solution we can dete~Ine some of the dynamical and thermal characteristics of the 
flow: 

(a) dra E coefficient 

Re . = + 2 + + 2, + + +.) ],,% 
"~" 4 (m + i) (2., + 5) (,. + 3) (.~ + 4) ' 

(b) fluid velocity alone the axis of the channel 

w (0) ----- m + 2 Hm (4m s + 2nt" + 49m + 28) 
m + I 2 (m + I/(2m + 5) (m + 3) (,, + 4) ; 

(c) Nusselt number for a Newtonlan fluld (m - i) 

l 17 377 H.  

~d) Nusselt number for an ideal dilating medium (small values of m) 

1 8 343 
Nt"q = 3,.~ ~ H m .  

The above solution will be correct for small values of H, which is proportional to the ther- 
mal load of the walls. When H is large the boundary value problem (4) can be integrated 
numerically. The results of these calculations are shown in Figs. 1-3 (in Fig. i, curves 1 
through 4 correspond to H = --i0, --3, 3, I0; in FIE. 2, curves 1 through 3 correspond to H = 
--, 0, | 

The class of flow under consideration is characterized by the existence of thresholds 
for motion and heat-exchange. For large thermal loads at the walls of the channel, in the 
case where the fluid is heated (large positive H), a piston-type motion occurs in which the 
fluid velocity in the center is constant and falls sharply to zero near the walls of the 
channel (see Fig. i). The temperature profile for large H is given by 0(~) ----0.3 (~--I) and 
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the Nusselt number in this case approaches the limiting value of 6. Recall that for a New- 
tonian fluid with a constant viscosity, a parabolic velocity profile and a constant Nusselt 
number (Nu = 4.12) is characteristic [4]. 

For cooling of the fluid (H < 0) a boundary layer forms in the center such that near 
the walls of the channel the fluid is practically at rest for large values of H, and only 
near the axis does the velocity increase to large values. In this case the limiting tempera- 
ture profile is given by 0(~) = ~--i, Nn = 2 (see Fig. 3). Thus for intermediate values of 
the constant H~ the Nusselt number varies within the interval 2 < Nu < 6. In Figs. i and 2 
the dashed lines show the classical solution for a Newtonian fluid with a constant viscosity. 

We discuss some features of (4). Let(H/n)O=v,;~=--~-~f-D . Then the boundary value 

problem (4) takes the form 

v" a - " / s - ' f ~ e "  v( t )  0, v' = , - V  ~"a~- , = (o) = o, v" (1) = o. 

We construct the Green's function for the operator v''' ffi 0 with boundary conditions (8) : 

(8) 

I t - - 0 , 5  (t= + ~"), ~ < t ,  
K (~, t) = I t - -  ~t, ~ 1> t 

The s o l u t i o n  of  (8) i s  w r i t t e n  as an i n t e g r a l  equa t ion  

I 

V (~) = ~ J'K (~, t) "~/ sh 8t eV(O. at. 
0 

(9) 

We consider the case of cooling of the fluid 8 > 0 and the parameter 8 will be taken 
as given. Thus the drag coefficient of the channel or the pressure differential across its 
length is given. 

Equation (8) corresponds to the following linear equation for the variation 

e r  sh6e~mq-~m ', ~ ( I ) = 0 ,  ~ ' ( 0 ) = 0 ,  m"(1)=O, (i0) 

which describes the behavior of infinitesimal temperature pulses for the approximation where 
the velocity and pressure fields are quasistationary: 

I f  the  spectrum of  the  boundary va lue  problem (10) has a l l  n e g a t i v e  e igenva lues  (~ < 0) ,  
viscous flow is stable with respect to thermal perturbations, and in the opposite case there 
is thermal instability. 

Equations (8) and (i0) differ from the classical equations describing thermal explo- 
sions [6] by the third order differential operator and the boundary conditions v''(1) = 
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~"(i) " 0. Because =he Green's function of the iterated operator L(v) - v'" is positive, 
the kernel of the integral equaClon (9) is oscillatory [8]. TBerefore the results of the 
theory of thermal explosions (the existence of a critical Be such that for S < B, the solu- 
tlon of (8) is positive and bounded, while such a solution does not exist for ~ > 8,, the 
nonuniqueness of the solutlon for S < B,, the stability of the smallest positive solution, 
etc.) can be completely carried over to equations (8), (9), and (i0). 

Fo.r example, we show that 8, exists and estimate its upper bound. We assume that the 
solution of (8) exists for any positive value of 8. Becasue K(~, t)~>0, we nave v(~, ~)~>0 
for 8 > 0. We consider the following eigenvalue problem 

z<0}=0, , '{t)=o, ( l l )  

Equation (11) is equivalent to a linear integral equation 

I 

(t) dr, (121 
@ 

where 

P 
Because the Green's function G(~, t) of the iterated operator L(z) = z'" is positive, the 
kernel of the integral equation (12) is oscillatory. According to [8], the elgenvalues of 
problem (12) satisfy the inequality 0<~0<~i<~... 

The eigenfunction zo(~) corresponding to ~@ does not have any zeros for ~(0. I). 
Multiplying (8) by z@(~) and integrating using the boundary conditions (8), (ii), we obtain 
the relation 

~0 ~ ' , =  

1 .!' 
0 
1 

g 

Because v(~, B)>/O the inequality eV~/ev is satisfied, from which it follows that 
~<90e-:. Hence for ~>~@-i a solution of boundary value problem (g) does not exist and 
therefore we obtain the estimate ~,~<~0 e-1. 

For small values of ~ in the case of a Newtonian fluid (n = i) we obtain the following 
values for the critical value of the pressure differential, the excess temperature, the heat 
flux, and Peclet number: 

8 , = 3 - 5 5 ,  v , (0 )=2 .81 ,  H , = 4 ,  P e , = 4 8  -1 . 

The dependence of  B, on the  f low index n f o r  l a r g e  Pe (5 + 0) i s  shown in  F i g .  4. 

Thus in  the  non i sOthe rmal  f low of  a v i s c o u s  f l u i d  in  a channe l  o f  f i n i t e  l e n g t h  whose 
walls are maintained at a temperature linearly dependent on the longitudinal coordinate, 
there exists a critical pressure dlfferentialabove which the flow is not stationary. Phys- 
ically this can be interpreted as a thermal explosion. 

We discuss the mechanism of heat transfer. Heat enters the cooled section as a result 
of convection and is carried off toward the walls by molecular heat conduction; in addition, 
at the walls of the channel, there is heat exchange with the external medium such that a 
linear temperature distribution is established on the walls. For supercritical pressure 
differentials the heat given off by the fluid in the channel is not carried off to the walls 
because the transport of this heat by convection depends exponentially on the excess tem- 
perature, while the heat emitted into the external medium depends linearly on the excess 
temperature. A breakdown of the thermal stability of flow occurs, which is defined as a 
convective thermal explosion. It follows from the above analysis that the principal factor 
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in the formation of a thermal instability of viscous flow is the convective term in the 
equation of heat transport; this differs from a hydrodyna~Lical thermal explosion where the 
principal factor is the dependence of the heat dissipation on temperature [5]. 

A similar situation arises in many physical problems involving propagation of heat 
(thermal explosions, thermal breakdown of dielectrics, etc.). 

Our results can also be used in diffusion problems in the case where the viscosity of 
the fluid depends exponentially on the concentration of diffusing material. 

Equations (8) and (9) written for the concentration of an impurity are exact (for the 
heat conduction problem (8) and (9) are approximate because heat dissipation is not taken 
into account). 

We consider the motion in a plane channel of a viscoplastic medium of the Shvedov-- 
Bingham type where the rheological equation has the form 

= --% "Jr', ~du/dy, % >f O, I t l / >  to; t = - % ,  It l  ~< %. 

We assume that in the temperature range under consideration % = const, ~ = ~oe-~(r-To) �9 
As in the previous problem, the temperature is given by a linear distribution on the walls 
of the channel. In this case a structural motion of the viscoplastlc medium occurs with 
viscous flow zones near the walls of the channel ,(h*~<y<~h), and an elastic zone (0~y ~i 
h*). In the viscous flow region, by integrating the system of equations(1), we obtain the 
following expressions for the frictional stress and velocity gradient. 

( t~ + to) ~ ?A (y - -  h*) 
r = -- r o + sb~A (h - -  h*) ' 

d_2u = (t,,, ~ t~_______~) sh yA (y - -  h*) eVr1(~) 
d3 Pw sh ~A (h - -  h*) 

w h e r e  TI(y) = T(x,  y) - -  T,,.(x). 

We obtain a boundary value problem for the excess temperature v - ~T,: 

s h a t ~ - - : )  . v ( t ) = 0 ,  v ' ( t )  0, v "  ----- B s i T ~ ' - - -  a-7 ev' = 

a = h*/h; B = p%A(v,,, + to)?ha/~w;~; 6 = ~Ah; 

v' (a) = av" (a), ( 1 3 )  

h* = %L/Ap*;  Ap* /L  i s  t h e  p r e s s u r e  

= 0 w i t h  b o u n d a r y  c o n d i t i o n s  

where ~ = y/h; 
differential on the axis of the elastic zone. 

We introduce the Green's function Kl(~, t) of operator v''' 
(13). It can easily be shown that K~(~, t) ~ K(~, t). 

Hence we have the nonlinear integral equation 

1 

B [ K (~, t) s), a (t -- a) e~Odt ( 1 4 )  (g) 
J sit 6 (1 - -  a) 
o 

We consider the case of cooling so that B > O. Because the Green's functions for (9) 
and (14) are the same, there exists a B, such that for B > B,, a solution of the nonlinear 
integral equation (14) does not exist. Hence for B > B, we again have the situation where 
the thermal equilibrium between heat convection and molecular heat conduction cannot be main- 
tained and this leads to a convection heat explosion. For subcritical flows (B < B,) the 
solution of (14) can be constructed by series expansion in a small parameter. The following 
results are obtained for the velocity of the viscoplastic medium in the viscous flow zone: 
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w o ( [ )  = - ( l  - a ) - ' [ 0 . 5 ( l  ~ - t )  - a ( ~  - 1 ) ] ,  

wl( [ )  = - - ( 1 2 ( 1  - -  a ) ) - ~ [ [  a - -  6a~  ~ -+- (6a ~ + l S a  - -  9 ) [  4 - -  ( 8 a '  + 

+ 24a  ~ - -  ] 2 ) ~  a + ( t 2 a  4 + i 2 a  a - -  24a  + t 5 ) [  ~ - -  (24a  4 - -  4 8 a  ~ -+- 

-5 30a )~  + 12a 4 - -  4 a  ~ - -  80a"  + 3 0 a  - -  7 ] .  

Here Wo(~) is t h e  classical solution for the isothermal flow of a viscoplastic medium 
obtained by Volarovich and Gutkin [7]. 
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HEATING IN THE DEFORMATION OF A STRUCTURED FLOWING SYSTEM 

L. M. Buchatskii, S. V. Maklakov, 
A. M. Stolln, and S. I. Khudyaev 

UDC 532.1.35 

T h e  heating of a liquid by deformation may alter the flow curve (the relation between 
the stress and the shear rate). The relationship may become nonlinear even for a Newtonian 
liquid. This is related for example to the phenomenon of hydrodynamic thermal explosion 
[1, 2]. In the rheological processing of viscometric data, it is important to distinguish 
the heating effect from the effects of the internal properties of the liquid. For this pur- 
pose, either the experiment should be done under certainly isothermal conditions, which re- 
stricts the measurement range, or allowance for the heating must be made in the calculation 
of the characteristics. The latter is simplest to provide when there is spatial homogeneity 
in the temperature, which occurs for example in a constant-pressure (moment) viscometer [3]. 

Here we examine the behavior of a structured flowing system under conditions of heating 
and we distinguish the physically distinct flow states and determine the parameter ranges 
corresponding to the different types of theological curve, and we also define critical con- 
ditions for structural ignition and extinction and for hydrodynamic thermal explosion in 
structured systems. 

i. Formulation of the Problem. We consider the nonisothermal flow of a two-component 
liquid with mutual conversion of the components [4, 5]. The mathematical formulation in- 
cludes not only the rheological and kinetic equations [4, 5] but also the heat-balance equa- 
tion, which incorporates the dissipative heat production, the heat produced during the struc- 
tural transformations, and the heat lost through the side walls: 

? = {afolexp[~l(T -- To)] ~ (1 a)Fo:exp[c,)~(T--To)])r; (i,i) 
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